// Weather Station 3 from AliExpress / TaoBao // // Highly inspired by https://github.com/kquinsland/ws3-to-esphome-bridge/ // // Maybe the code is not optimal but it works. // // Configuration of WS3 : // // JP1 toggle betwen ARS inch mode and professional metric mode // short : inch // open : metric // // JP2 baud rate // short : 2400 // open : 9600 // // Configuration used for this code : // JP1 : open // JP2 : closed // // Data is in the form : // // A4095B000C0000D0000E0000F0000G0000H0000I0000J0000K0000L0218M515N09654O.....*52 // // // Serial connection used there (hardcoded using AltSoftSerial) : // Only TX has to be connected, RX is not used by WS3. // // Board Receive // ----- ------- // Teensy 3.0 & 3.1 20 // Teensy 2.0 10 // Teensy++ 2.0 4 // Arduino Uno 8 // EtherTen 8 // Arduino Leonardo 13 // Arduino Mega 48 // Wiring-S 6 // Sanguino 14 // // This code was tested and developped on EtherTen board which // is Arduino Uno compatible with some additions. // // Use following libraries: // - AltSoftSerial // - Adafruit_MQTT // #include #include // EspSoftwareSerial (or plain SoftwareSerial) #include // MQTT #include // Domoticz MQTT configuration const char* mqtt_server = "portbuild.home.oav.net"; #define mqtt_port 1883 // Domoticz Indexes (virtual devices has to be created) #define domoticz_windir 48 // Wind Virtual device #define domoticz_temp 52 // Temp / Him / Baro virtual device #define domoticz_rain 51 // Rain Virtual device #define ELEVATION 323 // Elevation from the place we are // Longwy is at 323m // Definitions const char* Mqtt_clientid = "ESP-Weather-Station"; const char* dom_in = "domoticz/in"; #define MQTT_MAX_PACKET_SIZE 128 char msgToPublish[MQTT_MAX_PACKET_SIZE + 1]; // Wifi const char* ssid = "Kiwi"; const char* password = "ZeKiwi127"; // Defines #define DEBUG 1 #ifdef DEBUG #define debug(x) Serial.print(x) #define debugln(x) Serial.println(x) #else /* DEBUG */ #define debug(x) #define debugln(x) #endif /* DEBUG */ // Baud used to read see JP2 #define WS3_BAUD 2400 // Toggle support for PM2.5 sensor //#define SUPPORT_PM25_SENSOR // Define the length of data #ifdef SUPPORT_PM25_SENSOR // There is 88 bytes per packets #define WS3_PKT_LEN 78 // And the checksum is the last 2 bytes #define WS3_CHK_LEN 2 #define CHK_SUM_DELINEATOR 75 #else /* SUPPORT_PM25_SENSOR */ // There is 88 bytes per packets #define WS3_PKT_LEN 78 // And the checksum is the last 2 bytes #define WS3_CHK_LEN 2 #define CHK_SUM_DELINEATOR 75 #endif /* SUPPRT_PM25_SENSOR */ // Seems the Metric format does not have a correct checksum // In this case we should not test the checksum, just see // if we have a correct dataline #define DONT_CHKSUM 1 // Place holder for the packet received String pkt_str = ""; // Flag for packet OK volatile byte pkt_ok = false; SoftwareSerial WS3(15,16); WiFiClient espClient; PubSubClient client(espClient); // After parsing the string of bytes, we'll have an easier to use struct // TODO: this should be it's own file? struct WS3Packet { // The 1st field is "A0000" - Wind direction AD value in real time (0-4096) unsigned int wind_dir; // The 2nd field is "B000" - Wind direct angle value (16 direction) unsigned int wind_angle; // new // The 3rd field is "C0000" - Real time wind speed frequency 1Hz unsigned int wind_freq; // New // The 4th field is "D0000" - Real time wind speed, unit: 0.1 m/s float wind_speed; // The 5th field is "E0000" - Avg wind speed in the previous minute, unit: 0.1m/s float wind_speed_1m; // The 6th field is "F0000" - the highest wind speed in the last 5 minutes, unit: 0.1m/s float wind_speed_5m; // The 7th field is "G0000" - Real time rain bucket (0-9999), loop-count int rain_bucket_cnt; // New // The 8th field is "H0000" - Number of rain bucket in the last minute, (0-9999) int rt_rain_bucket; // The 9th field is "I0000" - Rain fall in 1 minute, unit: 0.1mm float rain_1m; // The 10th field is "J0000" - the previous hour's rainfall ( 0.1 mm) float rain_1h; // The 11th field is "K0000" - rainfall during the first 24 hours ( 0.1 mm) float rain_24h; // The 12th field is "L0000" - temperature, unit: degree C (unit 0.1 Degree) float temp_f; // The 13th field is "M000" - humidity ( 00 % - 99 %), unit 0.1% float humidity; // The 14th field is "M10020" - air pressure ( 0.1 hpa ) float air_pressure; }; // Return the index according to Wind Angle String str_windir(unsigned int WinVal){ //debug("str_windir() : "); //debugln(WinVal); if(WinVal >= 360) return "N"; //N if(WinVal >= 0 && WinVal < 22) return "N"; //N if(WinVal >= 22 && WinVal < 45) return "NNE"; //NNE if(WinVal >= 45 && WinVal < 67) return "NE"; //NE if(WinVal >= 67 && WinVal < 90) return "ENE"; //ENE if(WinVal >= 90 && WinVal < 112) return "E"; //E if(WinVal >= 112 && WinVal < 135) return "ESE"; //ESE if(WinVal >= 135 && WinVal < 157) return "SE"; //SE if(WinVal >= 157 && WinVal < 180) return "S"; //S if(WinVal >= 180 && WinVal < 202) return "S"; //S if(WinVal >= 202 && WinVal < 225) return "SSW"; //SSW if(WinVal >= 225 && WinVal < 247) return "SW"; //SW if(WinVal >= 247 && WinVal < 270) return "WSW"; //WSW if(WinVal >= 270 && WinVal < 292) return "W"; //W if(WinVal >= 292 && WinVal < 315) return "WNW"; //WNW if(WinVal >= 315 && WinVal < 337) return "NW"; //NW if(WinVal >= 337 && WinVal < 359) return "NNW"; //NNW } // Setup the stuff. void setup() { //Serial.begin(460800); Serial.begin(57600); while (!Serial) ; // wait for Arduino Serial Monitor to open Serial.println(""); Serial.println("Weather Station 3 Adapter by Kiwi"); Serial.println(ESP.getFullVersion()); WiFi.hostname("ESP-Weather-Station"); WiFi.mode(WIFI_STA); WiFi.begin(ssid, password); // Use this loop instead to wait for an IPv6 routable address // addr->isLocal() (meaning "not routable on internet") is true with: // - IPV4 DHCP autoconfigured address 169.254.x.x // (false for any other including 192.168./16 and 10./24 since NAT may be in the equation) // - IPV6 link-local addresses (fe80::/64) for (bool configured = false; !configured;) { for (auto addr : addrList) if ((configured = !addr.isLocal() // && addr.isV6() // uncomment when IPv6 is mandatory // && addr.ifnumber() == STATION_IF )) { break; } Serial.print('.'); delay(500); } Serial.println(""); Serial.println(F("WiFi Connected !")); #if LWIP_IPV6 Serial.printf("IPV6 is enabled\n"); #else Serial.printf("IPV6 is not enabled\n"); #endif Serial.print("My IP address: "); Serial.println(WiFi.localIP()); // TODO: Find the IPv6 given to the ESP ? // Start the Software Serial for WS3 WS3.begin(WS3_BAUD); debugln("WS3 UART is ready..."); // Allocate memory for packet pkt_str.reserve(WS3_PKT_LEN); debugln(" -> Packet memory allocated!"); // Now connect to MQTT client.setServer(mqtt_server, mqtt_port); //client.setCallback(callback); debugln("MQTT started"); } #ifdef DONT_CHKSUM // Validate packet using the checksum. // Work only APRS data on this 51W3 board. // Maybe the code on the board does not make the correct checksum ? bool validate_packet(String pay, unsigned long chk) { // Print the payload and the checksum we want debugln("validate_packet:"); debug(pay); debug(" * "); debugln(chk); // TEST DATA (actual packets) // c000s000g000t075r000p019h43b09940*32 // String pay = "c000s000g000t075r000p019h43b09940"; // byte chk = 0x32; // this will be in HEX) // c000s000g000t075r000p019h42b09940*33 // String pay = "c000s000g000t075r000p019h42b09940"; // byte chk = 0x33; // this will be in HEX) // c000s000g000t075r000p019h42b09939*3D // String pay = "c000s000g000t075r000p019h42b09939"; // byte chk = 0x3D; // this will be in HEX) // SUPER grateful for the helpful https://toolslick.com/math/bitwise/xor-calculator to validate my // code! // Current byte byte i1=0; // the intermediate checksum byte tmp = 0; // starting from the second character, we begin XORing for (int x = 0; x < pay.length() ; x++) { i1=pay[x]; // Do the xOR tmp = tmp^i1; } // do the check if(tmp == chk){ return true; } else { debugln("INVALID!"); debug("calculated:"); debugln(tmp); return false; } } #endif /* DONT_CHKSUM */ // Parse the packet and fill the structure with data void parse_packet(String payload, WS3Packet* p) { // E.G.: A4095 B000 C0000 D0000 E0000 F0000 G0000 H0000 I0000 J0000 K0000 L0237 M502 N09810 O..... // Parse in order, starting with A0000 (wind dir real time, 0-4096) int wind_dir_idx = payload.indexOf('A'); p->wind_dir = payload.substring(wind_dir_idx+1, wind_dir_idx+5).toInt(); // Then move on to B000 - wind direction angle (16 direction) int wind_angle_idx = payload.indexOf('B'); p->wind_angle = payload.substring(wind_angle_idx+1, wind_angle_idx+4).toInt(); // Then move on to C0000 - wind speed frequency (1 Hz) int wind_freq_idx = payload.indexOf('C'); p->wind_freq = payload.substring(wind_freq_idx+1, wind_freq_idx+5).toInt(); // Then move on to D0000 - wind speed real time (unit 0.1 m/s) int wind_speed_idx = payload.indexOf('D'); p->wind_speed = payload.substring(wind_speed_idx+1, wind_speed_idx+5).toInt() / 10; // Then move on to E0000 - wind speed avg in the last minute (unit 0.1 m/s) int wind_speed_1m_idx = payload.indexOf('D'); p->wind_speed_1m = payload.substring(wind_speed_1m_idx+1, wind_speed_1m_idx+5).toInt() / 10; // Then move on to F0000 - wind speed over the last 5 min int wind_speed_5_idx = payload.indexOf('F'); p->wind_speed_5m = payload.substring(wind_speed_5_idx+1, wind_speed_5_idx+5).toInt() / 10; // Then move on to G0000 - Rain in Realtime (0-9999 counter) bucket int rain_bucket_cnt_idx = payload.indexOf('G'); p->rain_bucket_cnt = payload.substring(rain_bucket_cnt_idx+1, rain_bucket_cnt_idx+5).toInt(); // Then move on to H0000 - Rain bucket in the last 1 minute (0-9999 counter) int rt_rain_bucket_idx = payload.indexOf('H'); p->rt_rain_bucket = payload.substring(rt_rain_bucket_idx+1, rt_rain_bucket_idx+5).toInt(); // Then move on to I0000 - rain last minute (0.1mm) int rain1m_idx = payload.indexOf('I'); p->rain_1m = payload.substring(rain1m_idx+1, rain1m_idx+5).toInt() *.1; // Then move on to J0000 - rain last hour (0.1mm) int rain1h_idx = payload.indexOf('J'); p->rain_1h = payload.substring(rain1h_idx+1, rain1h_idx+5).toInt() *.1; // Then move on to K0000 - rain last 24h (0.1mm) int rain24h_idx = payload.indexOf('K'); p->rain_24h = payload.substring(rain24h_idx+1, rain24h_idx+5).toInt()*.1; // Then move on to L0200 - temp (0.1°C) // XXX: Check with minus zero temperatures int temp_idx = payload.indexOf('L'); p->temp_f = payload.substring(temp_idx+1, temp_idx+5).toInt()*.1; // Then move on to M611 - Humidity int humidity_idx = payload.indexOf('M'); // p->humidity = payload.substring(humidity_idx+1, humidity_idx+3).toInt()*.1; p->humidity = payload.substring(humidity_idx+1, humidity_idx+3).toInt(); // Then move on to N10020 - air pressure int pressure_idx = payload.indexOf('N'); p->air_pressure = payload.substring(pressure_idx+1, pressure_idx+6).toInt()*.1; } // Clear the packet before working on the next void clear_pkt(WS3Packet* p) { p->wind_dir = 0; p->wind_angle = 0; p->wind_freq = 0; p->wind_speed = 0; p->wind_speed_1m = 0; p->wind_speed_5m = 0; p->rain_bucket_cnt = 0; p->rt_rain_bucket = 0; p->rain_1m = 0; p->rain_1h = 0; p->rain_24h = 0; p->temp_f = 0; p->humidity = 0; p->air_pressure = 0; } #ifdef DEBUG // Print the data void print_weather(WS3Packet* p){ Serial.print("Wind Direction (realtime): "); Serial.println(p->wind_dir, DEC); //Serial.println(" degrees"); Serial.print("Wind direction angle : "); Serial.print(p->wind_angle, DEC); Serial.print(" degree "); Serial.println(str_windir(p->wind_angle)); Serial.print("Wind speed Frequency: "); Serial.print(p->wind_freq, DEC); Serial.println(" Hz"); Serial.print("Wind speed: "); Serial.print(p->wind_speed, DEC); Serial.println(" m/s"); Serial.print("Wind speed 1m: "); Serial.print(p->wind_speed_1m, DEC); Serial.println(" m/s"); Serial.print("Wind speed 5m: "); Serial.print(p->wind_speed_5m, DEC); Serial.println(" m/s"); Serial.print("temp_f: "); Serial.print(p->temp_f, DEC); Serial.println(" deg. C."); Serial.print("Rain buckets / buckets 1m: "); Serial.print(p->rain_bucket_cnt, DEC); Serial.print(" / "); Serial.println(p->rt_rain_bucket, DEC); Serial.print("Rain 1m / 1H / 24H: "); Serial.print(p->rain_1m, DEC); Serial.print(" / "); Serial.print(p->rain_1h, DEC); Serial.print(" / "); Serial.print(p->rain_24h, DEC); Serial.println(" mm"); Serial.print("humidity: "); Serial.print(p->humidity, DEC); Serial.println(" %"); Serial.print("air_pressure: "); Serial.print(p->air_pressure, DEC); Serial.println(" hpa"); } #endif /* DEBUG */ // Print the data over MQTT void push_weather(WS3Packet* p) { String MQPayload; float SLpressure_mB; float WindGust = 0.0; // Gust is actually set to 0.0 // Have to find a nice way to compute this. // Rain MQPayload = "{ \"idx\" : "+ String(domoticz_rain) +",\"nvalue\" : 0, \"svalue\" : \"" + String(p->rain_1m) + ";" + String(p->rain_1m) + "\"}"; sendMQTTPayload(MQPayload); // Temperature / Humidity / Baro //SLpressure_mB = (((p->air_pressure)/pow((1-((float)(ELEVATION))/44330), 5.255))/100.0); SLpressure_mB = p->air_pressure; MQPayload = "{ \"idx\" : "+ String(domoticz_temp) +",\"nvalue\" : 0, \"svalue\": \"" + String(p->temp_f) + ";" + String(p->humidity) + ";0;" + String(SLpressure_mB) +";0\"}"; sendMQTTPayload(MQPayload); // Wind MQPayload = "{ \"idx\" : "+ String(domoticz_windir) +",\"nvalue\" : 0, \"svalue\": \"" + String(p->wind_angle) + ";" + String(str_windir(p->wind_angle)) + ";" + String(p->wind_speed*10) + ";" + String(WindGust*10) +";" + String(p->temp_f) + ";"+String(p->temp_f)+"\"}"; sendMQTTPayload(MQPayload); } // Processing the packet. bool process_packet(String pkt, WS3Packet* p) { debugln("[D] process_packet - ALive!"); debugln(pkt); // Allocate bytes for the payload String payload; payload.reserve(WS3_PKT_LEN-WS3_CHK_LEN); #ifdef DONT_CHKSUM // everything after the * is checksum (2 char long) unsigned long chksum; #endif /* DONT_CHKSUM */ // Check if the 75rd character is * if (pkt.charAt(CHK_SUM_DELINEATOR) != '*') { debugln("Packed invalid; no * character at position 75!"); return false; #ifdef DONT_CHKSUM } else { // The character indicating the checksum is coming is in the correct place. Yay. // Now, we need to pull the two ascii characters that are transmitted to us // and turn them into a single byte. E.G. Char 3, Char D should convert to 0x3D. // // We can do this with the strtoul() function; we indicate that we wante base 16 chksum = strtoul(pkt.substring(CHK_SUM_DELINEATOR+1, CHK_SUM_DELINEATOR+2).c_str(),NULL,16); } #endif /* DONT_CHKSUM */ // We have the checksum, Now we can bother to get the payload payload = pkt.substring(0, CHK_SUM_DELINEATOR); // And try to validate... #ifndef DONT_CHKSUM if(!validate_packet(payload, chksum)){ debugln("invalid packet! :("); return false; } else { debugln("Valid packet!"); } #endif /* DONT_CHKSUM */ parse_packet(payload, p); return true; } void loop() { // MQTT if (!client.connected()) { reconnect(); } // While data comes in and we don't have a pending packet to process... while (WS3.available() && pkt_ok !=true) { // Pull the bytes off the stream char inChar = (char)WS3.read(); // And build up the packet pkt_str += inChar; // Until we hit the end if (inChar == '\n') { pkt_ok = true; } } // Yay, we now have a packet! // Now, we attempt to parse out the string into a packet that we can work with if (pkt_ok) { debugln("pkt_ok!"); // At this point, we have a string of characters that was probably a valid packet // We set get some memory and attempt to parse the string into the struct WS3Packet p = {}; // Validate the payload, then parse it. if (process_packet(pkt_str, &p)) { // print results if parse OK #ifdef DEBUG print_weather(&p); #endif /* DEBUG */ push_weather(&p); debugln("processed"); } else { debugln("unable to parse packet :("); } // clear so we can start again pkt_str = ""; pkt_ok = false; clear_pkt(&p); } } // MQTT Stuff void callback(char* topic, byte* payload, unsigned int length) { debug("Message arrived ["); Serial.print(topic); debug("] "); for (int i = 0; i < length; i++) { Serial.print((char)payload[i]); } debug(" "); } void reconnect() { // Loop until we're reconnected while (!client.connected()) { debug("Attempting MQTT connection..."); // Attempt to connect if (client.connect(Mqtt_clientid)) { debugln("connected"); // ... and resubscribe client.subscribe(dom_in); } else { debug("failed, rc="); debug(client.state()); debugln(" try again in 5 seconds"); // Wait 5 seconds before retrying for(int i = 0; i<5000; i++){ delay(1); } } } } // Sends MQTT payload to the Mosquitto server running on a Raspberry Pi. // Mosquitto server deliveres data to Domoticz server running on a same Raspberry Pi void sendMQTTPayload(String msgpayload) { // Convert payload to char array msgpayload.toCharArray(msgToPublish, msgpayload.length()+1); //Publish payload to MQTT broker if (client.publish(dom_in, msgToPublish)) { debug("Following data published to MQTT broker: "); debug(dom_in); debug(" "); debugln(msgpayload); } else { debug("Publishing to MQTT broker failed... "); debugln(client.state()); } }